Small-angle static light scattering of concentrated silica suspensions during in situ destabilization.

نویسندگان

  • Hans M Wyss
  • Josef Innerlohinger
  • Lorenz P Meier
  • Ludwig J Gauckler
  • Otto Glatter
چکیده

The aggregation of concentrated aqueous silica suspensions is characterized by means of static light scattering. We use an in situ destabilization mechanism based on the enzyme-catalyzed hydrolysis of urea. This method enables us to continuously and homogeneously change the interparticle potential from repulsive to attractive without disturbing the aggregation process. Moreover, our electrostatically stabilized suspensions can be destabilized by two different methods. In the first method, the pH is shifted toward the isoelectric point of the particles ( Delta pH method), thereby leading to a decrease of their surface charge. In the second method, the ionic strength is continuously increased at constant pH ( Delta I method), leading to a compression of the electrical double layer around the charged particles. A laboratory-built flat-cell light-scattering instrument is used, which allows fast data acquisition and an adjustment of the sample cell thickness. To circumvent multiple scattering effects, we use a very small sample thickness ( approximately 13 microm). In addition, the refractive index difference between the aqueous phase and the particles is reduced by adding sucrose to the liquid phase of our suspensions. We are able to characterize the structural changes at the very early stages of the destabilization process, where no significant effects are yet detected in macroscopic rheological measurements. While during the Delta pH destabilization, the scattering curve shows significant changes only after some characteristic delay time, it changes continuously during the Delta I destabilization. The latter is attributed to the formation of a weak pre-gel structure in the suspensions, as a shallow secondary minimum appears in the interparticle potential. Data are evaluated by using a HMSA square-well structure factor model. Results are in good agreement with those predicted from DLVO theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Absence of scaling for the intermediate scattering function of a hard-sphere suspension: static and dynamic x-ray scattering from concentrated polystyrene latex spheres.

X-ray photon correlation spectroscopy and small-angle scattering measurements are presented of the dynamics and structure of concentrated suspensions of charge-stabilized polystyrene latex spheres dispersed in glycerol, for volume fractions from 3% to 52%. The static structures of the suspensions show essentially hard-sphere behavior, and the short-time dynamics shows good agreement with predic...

متن کامل

The effects of particle size on reversible shear thickening of concentrated colloidal dispersions

The particle size dependence of the reversible shear thickening transition in dense colloidal suspensions is explored. Five suspensions of monodisperse silica are synthesized via the Stöber synthesis. The physicochemical properties of the dispersions are quantified using transmission electron microscopy, dynamic light scattering, small angle light scattering, electrophoresis, and viscometry. Rh...

متن کامل

Structure and dynamics studies of concentrated micrometer-sized colloidal suspensions.

We present an experimental study of the structural and dynamical properties of concentrated suspensions of different sized polystyrene microspheres dispersed in glycerol for volume fraction concentrations between 10% and 20%. The static structure, probed with ultrasmall-angle X-ray scattering, shows a behavior very similar to that of hard spheres. The equilibrium dynamics is probed with ultrasm...

متن کامل

Effective screening of hydrodynamic interactions in charged colloidal suspensions.

We investigate the hydrodynamic interaction in suspensions of charged colloidal silica spheres. The volume fraction as well as the range of the electrostatic repulsion between the spheres is varied. Using a combination of dynamic x-ray scattering, cross-correlated dynamic light scattering, and small angle x-ray scattering, the hydrodynamic function H(q) is determined experimentally. The effecti...

متن کامل

From colloidal-silica sols to aerogels and xerogels

By destabilization of quasi-monodisperse silica sols, fractal clusters can be obtained. Solvent evacuation gives a porous solid with fractal structure. Structural investigations of these colloidal aerogels by small-angle neutron scattering are presented, and compared to similar observations in concentrated sols and xerogels. An investigation of the vibrational modes of these materials by inelas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of colloid and interface science

دوره 271 2  شماره 

صفحات  -

تاریخ انتشار 2004